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Point Forecasts to Probability Clouds: Deep Learning 

Meets Electricity Market Uncertainty

➢ Electricity Market Forecasting: Accurate forecasting of electricity prices, called Locational 

Marginal Prices (LMPs), is essential for grid operators and energy traders. Good forecasts 

support better scheduling, risk management, and overall market efficiency.

➢ Challenges: Day-ahead LMPs are highly volatile, affected by weather, demand changes, and 

unexpected outages. Traditional models struggle with the nonlinearity and sudden price spikes, 

especially as renewable energy makes the system even more unpredictable.

➢ Deep Learning Opportunity: Deep learning models like Transformers and RNNs can learn 

complex patterns in time-series data. These methods have been successful in other fields and 

offer a promising way to model electricity prices more accurately.

➢ Need for Uncertainty Quantification: Standard (deterministic) models only predict one price 

value, without showing how confident they are. In real-world markets, knowing the possible 

range of outcomes is crucial. Probabilistic forecasting solves this by predicting a full range of 

future prices, helping operators plan for best and worst cases.

➢ Goal: I compare several deep learning models on NYISO day-ahead prices and adapt a new 

probabilistic model — UWIAE-GPF (Univariate Weak Innovation Autoencoder for Generative 

Probabilistic Forecasting) — to produce not only accurate forecasts but also meaningful 

uncertainty estimates.
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Experiments
➢ Training Setup

Models are trained on the historical NYISO data using PyTorch. I use a rolling window of past 1, 2, 7, 14, 28 days (24 – 672 h) 

of prices as input to predict the next-day hourly LMP (24 h) for N.Y.C. zone. 

➢ Probabilistic Forecast Generation

❑ After convergence, 1 000 latent resamplings per forecast window → ensemble of 24-h price paths.

❑ From the ensemble we extract:

❖ Mean (μ̂) and Median (m̂) trajectories — used as point forecasts.

❖ Symmetric central intervals (90 % / 50 % / 10 %) — used for risk bands.

❑ Transformer / LSTM outputs are single-valued ⇒ treated as μ̂ only; no built-in interval.

➢ Evaluation Metrics

All errors are normalized (N-) by dividing by the empirical price range over the test set.

Conclusions

➢ Dataset: New York Independent System Operator (NYISO) Day-Ahead Market Locational 

Based Marginal Prices (LBMP) data for the N.Y.C. zone, covering January 1, 2018 to 

December 30, 2023 [1]. The dataset provides hourly clearing prices for electricity delivered the 

next day. Each day contains 24 hourly price points. 

➢ Forecasting Task: Formulated as a time-series prediction problem. Given a window of past 

prices, the goal is to predict future prices.

➢ Data Preparation: The dataset is split chronologically into a training set (2018–2022) and a 

test set (2023). Prices are normalized based on historical means and variances during training 

and rescaled back for evaluation. 

➢ Characteristics: The LMP time series shows regular daily cycles and weekly trends, but also 

sharp spikes during high demand or generator outages. These characteristics demand models 

that can capture periodic structure and react to anomalies. The problem setup thus evaluates 

whether advanced models can learn the base patterns while being flexible enough to predict 

rare events.

Deterministic · Transformer Variants
• Informer[5] (prob-sparse attention)

• iTransformer[6] (inverted FFT mixing)

• PatchTST[7] (patch embedding of subsequences)

• Autoformer[8] (auto-correlation decomposition)

Probabilistic · Diffusion-Based Model
• TimeGrad[9] – latent denoising-diffusion process

Deterministic · Classic Deep Learning Models
• GRU[2]– gated recurrent memory of past prices

• Nlinear[3] – season-trend linear residual model

• StemGNN[4] – spectral graph convolution over time

Probabilistic · Flow-Based Models
• GRU-RealNVP [10]

• GRU-MAF [10]

• Transformer-MAF [10]

Probabilistic · Innovation Autoencoder
• WIAE_GPF [11]–  Original Weak-Innovation Autoencoder

• UWIAE_GPF – Univariate version with improved performance

NMSE

(Normalized Mean Squared Error)

 

Average of squared forecast errors, 

normalized by the variance (or price 

range) of the series

Penalizes large errors heavily

NMAE

(Normalized Mean Absolute Error)

Average of absolute forecast errors, 

normalized by the price range

Easy to interpret; less sensitive to 

outliers than NMSE; normalized for fair 

comparison.

MAPE

(Mean Absolute Percentage Error)

Mean of absolute errors divided by 

actual values, expressed as a percentage.

Intuitive percentage interpretation; 

useful for business/market 

communication.

MASE

(Mean Absolute Scaled Error)

Mean absolute error scaled relative to a 

naïve benchmark (e.g., last observation).

Allows fair comparison to a simple 

baseline; values >1 indicate worse than 

naïve.

➢ By fusing weak-innovation encoding with an upgraded adversarial generator, 

UWIAE_GPF sets a new benchmark for probabilistic electricity-price forecasting, 

outperforming both state-of-the-art Transformers and earlier generative baselines in 

every key metric.

Simplified WIAE-GPF architecture: encoder-decoder plus innovation & reconstruction critics

➢ Probabilistic Wins → Lower Risk: My improved UWIAE-GPF model achieved the best 

accuracy with an NMSE of 0.093, which is 65.3% lower than PatchTST and 39.2% lower than 

the original WIAE, while maintaining a 4× faster per-epoch training time than PatchTST (the 

best-performing deterministic model).

➢ Transformer vs. LSTM: Attention nets (PatchTST > iTransformer > Informer) beat recurrent 

baselines, but gains flatten once the history window exceeds ~7 days.

➢ Generative Edge: Autoencoder + GAN critics learns spike-tail distributions; sample paths 

reveal multiple market “scenarios,” giving operators a quantitative feel for worst-case prices.

➢ I would like to thank Prof. Lang Tong for his guidance and for introducing the WIAE-GPF 

framework, originally proposed by Xinyi Wang, Qing Zhao, and Lang Tong. Special thanks to 

Ph.D. student Ze Hu for his valuable support on data processing and model choices.
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